作者单位
摘要
1 淮南师范学院 电子工程学院,安徽 淮南 232038
2 潍坊学院 化学化工与环境工程学院,山东 潍坊 261061
利用高温固相法制备了一系列不同Pr3+掺杂浓度的CsLa(WO42荧光粉,测试了X射线衍射(XRD)、漫反射光谱、激发光谱、发射光谱与荧光衰减曲线,讨论了光致发光光谱与浓度、温度的联系,并基于荧光强度比(FIR)技术计算得出温度传感相关参数。CsLa(WO42∶Pr3+主要呈现源自3P01D2能级的发射,对应的最佳掺杂浓度分别为0.03和0.01,经证实电偶极⁃电偶极相互作用导致了浓度猝灭。3P01D2能级的发射随温度变化趋势不同,这主要归因于Pr3+⁃W6+的价间电荷迁移(IVCT)、交叉弛豫(CR)和多声子弛豫(MPR)等过程的综合作用。由于上述发射表现出不同的浓度和温度依赖特性,实现了颜色可调谐发光。基于3P13H5/3P03H4热耦合能级对和1D23H4/3P03H4非热耦合能级对的FIR,计算得到相对灵敏度分别为586.01/T2 K-1和1 071.78/T2 K-1,表明该材料在温度传感领域具有潜在应用价值。
Pr3+ CsLa(WO42 光致发光 温度传感 荧光强度比(FIR) Pr3+ CsLa(WO42 photoluminescence temperature sensing fluorescence intensity ratio(FIR) 
发光学报
2023, 44(9): 1570
作者单位
摘要
淮南师范学院 电子工程学院,淮南 232038
利用高温固相法在1 200℃制备了一系列红色荧光粉(Y1-x6TeO12xEu3+x=0.1~0.5)材料。对样品进行了X射线衍射、形貌特征、激发和发射光谱、浓度猝灭、热稳定性、荧光衰减曲线以及发光二极管封装与光色电性能等方面的分析与探究。结果表明:该红色荧光粉样品能被近紫外光(393 nm处)和蓝光(464 nm处)有效激发,在632 nm处表现出较强的红光发射。根据荧光强度与掺杂浓度的变化趋势,确定出最佳Eu3+掺杂量为x=0.3,更多的掺杂量引起浓度猝灭。进一步分析激活剂Eu3+间能量传递类型,得出电偶极-电偶极作用导致了浓度猝灭。(Y0.76TeO12:0.3Eu3+在150℃时积分发光强度是室温的76.5%,热激活能为0.196 9 eV。该样品的荧光寿命为813 μs,色坐标值为(0.637 6,0.343 1),并基于板上芯片工艺进行了发光二极管封装,对光色电性能进行了表征。(Y1-x6TeO12xEu3+荧光粉表现出了良好的发光特性、发光热稳定性及色纯度,在白光发光二极管中具有潜在的应用价值。
(Y1-x)6TeO12:xEu3+ 发光特性 浓度猝灭 热稳定性 白光发光二极管 (Y1-x)6TeO12:xEu3+ Luminescent properties Concentration quenching Thermal stability w-LED 
光子学报
2023, 52(2): 0216001
作者单位
摘要
北京京东方光电科技有限公司, 北京 100176
在电子纸行业中, 为了减少光刻次数、降低成本, 部分产品的TFT基板会采用半色调掩膜工艺, 传统的一次湿刻一次干刻(1W1D)方法要求半色调掩膜光刻胶厚度与均一性同时满足较高要求, 管控难度大, 导致曝光多次返工浪费产能; 而且, 1W1D的刻蚀均一性很差, 使玻璃四周沟道a-Si过薄, 影响良率。为了改善这两方面的问题, 我们参考了非电子纸产品的两次湿刻两次干刻(2W2D)工艺。然而非电子纸的2W2D工艺会产生较长的a-Si拖尾现象, 导致较大的寄生电容, 造成良率损失; 此外, a-Si残留和沟道特性问题也阻碍了电子纸良率的进一步提升。因此, 我们通过降低两次湿刻时间, 改善灰化条件, 减小a-Si拖尾长度; 建立a-Si处理工序, 消除a-Si残留; 调整a-Si成膜条件和钝化层成膜前处理条件, 改善沟道特性。实验结果表明: 采用改善后的2W2D工艺可以完全满足电子纸的特性要求, 并且相比于1W1D方法, 得到的沟道厚度均一性提升50%, 阵列检测良率提升4%~10%; 同时无需管控半色调掩膜光刻胶的均一性, 仅满足光刻胶厚度的管控要求即可, 使曝光返工比例降低60%。改善后的2W2D工艺有效改善了电子纸产品的沟道特性与刻蚀均一性, 提升了产品良率, 减少了产能浪费, 降低了成本, 对4次光刻电子纸产品具有重要指导意义。
电子纸 半色调掩膜 两次湿刻两次干刻 沟道厚度 沟道特性 electronic paper halftone mask 2W2D channel thickness channel characteristics 
液晶与显示
2020, 35(4): 306
作者单位
摘要
西南技术物理研究所, 四川 成都 610041
基于能量均分方法, 根据经典热传导和热弹性理论, 建立了激光二极管端面抽运梯度浓度掺杂棒状激光介质的数值模型, 考虑到梯度浓度掺杂激光介质端面与空气的对流换热和激光介质材料的热力学参数的温度相关性, 运用有限元法, 得出了单一浓度掺杂、2阶阶变梯度浓度掺杂、5阶阶变梯度浓度掺杂和理想梯度浓度掺杂四种掺杂结构激光介质内吸收系数、抽运光吸收功率、温度、热应力和应变的空间分布。结果表明, 采用梯度浓度掺杂结构可以大大提高激光介质内抽运光吸收分布的均匀性, 5阶阶变梯度浓度掺杂激光介质的最高温度、最大主拉应力和最大主应变分别为单一浓度掺杂激光介质的42.6%、31.9%和28.1%, 可见明显减小了热效应的影响。理论分析结果可为激光二极管抽运梯度浓度掺杂激光器的合理优化设计提供数据理论支撑。
激光二极管端面抽运固体激光器 热效应 有限元法 梯度浓度掺杂 laser diode end-pumped solid-state laser thermal effect finite element method gradient concentration doping 
红外与激光工程
2019, 48(11): 1105004
Yang Liu 1,2Yue Tong 3Suyu Li 1,2Ying Wang 1,2[ ... ]Mingxing Jin 1,2,**
Author Affiliations
Abstract
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun 130012, China
3 Aviation University of Air Force, Changchun 130021, China
We investigate the temperature dependence of the emission spectrum of a laser-induced semiconductor (Ge and Si) plasma. The change in spectral intensity with the sample temperature indicates the change of the laser ablation mass. The reflectivity of the target surface is reduced as the sample is heated, which leads to an increase in the laser energy coupled to the surface of the sample and eventually produces a higher spectral intensity. The spectral intensities are enhanced by a few times at high temperatures compared with the cases at low temperatures. The spectral intensity of Ge is enhanced by 1.5 times at 422.66 nm, and 3 times at 589.33 nm when the sample temperature increases from 50°C to 300°C. We can obtain the same emission intensity by a more powerful laser or by less pulse energy with a higher sample temperature. Based on experimental observations we conclude that the preheated sample can improve the emission intensity of laser-induced semiconductor plasma spectroscopy.
300.6365 Spectroscopy, laser induced breakdown 350.5400 Plasmas 
Chinese Optics Letters
2016, 14(12): 123001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!